Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Sci Total Environ ; 918: 170734, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325455

RESUMEN

Daycare centers (DCCs) play an instrumental role in early childhood development, making them a significant indoor environment for a large number of children globally. Amidst routine DCC activities, young children are exposed to a myriad of volatile organic compounds (VOCs), potentially impacting their health. Therefore, this study aims to investigate the VOC emissions during typical DCCs activities and evaluate respective health risk assessments. Employing a full-scale experimental setup within a well-controlled climate chamber, research was conducted into VOC emissions during three typical DCC events: arts-and-crafts (painting, gluing, modeling), cleaning, and sleeping activities tied to mattresses. The research identified 96 distinct VOCs, grouped into twelve categories, from 20 different events examined. Each event exhibited a unique VOC fingerprint, pinpointing potential source tracers. Also, significant variations in VOC emissions from different events were demonstrated. For instance, under cool & dry conditions, acrylic painting recorded high total VOC concentrations of 808 µg/m3, whereas poster painting showed only 58 µg/m3. Given these disparities, the study emphasizes the critical need for carefully selecting arts-and-crafts materials and cleaning agents in DCCs to effectively reduce VOC exposure. It suggests ventilating new mattresses before use and regular mattress check-ups to mitigate VOCs exposure during naps. Importantly, it revealed that certain events resulted in VOC levels exceeding the 10-5 cancer risk thresholds for younger children. Specifically, tetrachloroethylene and styrene from used mattresses in cool & dry conditions, ethylene oxide from new mattresses in warm & humid conditions, and styrene, during sand modeling in both conditions, were the key compounds contributing to this risk. These findings highlight the critical need for age-specific health risk assessments in DCCs. This study highlights the significance of understanding the profiles of VOC emissions from indoor events in DCCs, emphasizing potential health implications and laying a solid foundation for future investigations in this field.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Preescolar , Niño , Humanos , Compuestos Orgánicos Volátiles/análisis , Medición de Riesgo , Clima , Estirenos , Contaminación del Aire Interior/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente
3.
Clin Infect Dis ; 76(10): 1854-1859, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36763042

RESUMEN

This is an account that should be heard of an important struggle: the struggle of a large group of experts who came together at the beginning of the COVID-19 pandemic to warn the world about the risk of airborne transmission and the consequences of ignoring it. We alerted the World Health Organization about the potential significance of the airborne transmission of SARS-CoV-2 and the urgent need to control it, but our concerns were dismissed. Here we describe how this happened and the consequences. We hope that by reporting this story we can raise awareness of the importance of interdisciplinary collaboration and the need to be open to new evidence, and to prevent it from happening again. Acknowledgement of an issue, and the emergence of new evidence related to it, is the first necessary step towards finding effective mitigation solutions.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Pandemias/prevención & control , Organización Mundial de la Salud , Sociedades
4.
Indoor Air ; 32(10): e13116, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36305072

RESUMEN

Several studies found that classrooms' indoor environmental quality (IEQ) can positively influence in-class activities. Understanding and quantifying the combined effect of four indoor environmental parameters, namely indoor air quality and thermal, acoustic, and lighting conditions on people is essential to create an optimal IEQ. Accordingly, a systematic approach was developed to study the effect of multiple IEQ parameters simultaneously. Methods for measuring the IEQ and students' perceived IEQ, internal responses, and academic performance were derived from literature. Next, this systematic approach was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students (n = 163) were measured. During the pilot study, the IEQ of the classrooms varied slightly. Significant associations (p < 0.05) were observed between these natural variations and students' perceptions of the thermal environment and indoor air quality. These perceptions were significantly associated with their physiological and cognitive responses (p < 0.05). Furthermore, students' perceived cognitive responses were associated with their short-term academic performance (p < 0.01). The observed associations confirm the construct validity of the systematic approach. However, its validity for investigating the influence of lighting remains to be determined.


Asunto(s)
Rendimiento Académico , Contaminación del Aire Interior , Humanos , Proyectos Piloto , Estudiantes
5.
Indoor Air ; 32(8): e13070, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36040283

RESUMEN

The question of whether SARS-CoV-2 is mainly transmitted by droplets or aerosols has been highly controversial. We sought to explain this controversy through a historical analysis of transmission research in other diseases. For most of human history, the dominant paradigm was that many diseases were carried by the air, often over long distances and in a phantasmagorical way. This miasmatic paradigm was challenged in the mid to late 19th century with the rise of germ theory, and as diseases such as cholera, puerperal fever, and malaria were found to actually transmit in other ways. Motivated by his views on the importance of contact/droplet infection, and the resistance he encountered from the remaining influence of miasma theory, prominent public health official Charles Chapin in 1910 helped initiate a successful paradigm shift, deeming airborne transmission most unlikely. This new paradigm became dominant. However, the lack of understanding of aerosols led to systematic errors in the interpretation of research evidence on transmission pathways. For the next five decades, airborne transmission was considered of negligible or minor importance for all major respiratory diseases, until a demonstration of airborne transmission of tuberculosis (which had been mistakenly thought to be transmitted by droplets) in 1962. The contact/droplet paradigm remained dominant, and only a few diseases were widely accepted as airborne before COVID-19: those that were clearly transmitted to people not in the same room. The acceleration of interdisciplinary research inspired by the COVID-19 pandemic has shown that airborne transmission is a major mode of transmission for this disease, and is likely to be significant for many respiratory infectious diseases.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Humanos , Pandemias , Aerosoles y Gotitas Respiratorias , SARS-CoV-2
6.
Environ Int ; 166: 107372, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35777114

RESUMEN

Daycare centers (DCCs) are where infants and toddlers (0-4 years old) spend the most time besides their homes. Given their higher susceptibility to the effects of air pollutants, as compared to older children and adults, indoor air quality (IAQ) is regarded as an essential parameter to monitor in DCCs. Recent advances in IAQ monitoring technologies have enabled the deployment of low-cost air quality monitors (LCMs) and single sensors (LCSs) to continuously monitor various indoor environments, and their performance testing should also be performed in the intended indoor applications. To our knowledge, there is no study evaluating the application of LCMs/LCSs in DCCs scenarios yet. Therefore, this study is aimed to assess the response of five types of LCMs (previously not tested) and five LCSs to typical DCCs emission activities in detecting multiple IAQ parameters, i.e., particulate matter, carbon dioxide, total volatile organic compounds, temperature, and relative humidity. These LCMs/LCSs were compared to outcomes from research-grade instruments (RGIs). All the experiments were performed in a climate chamber, where three kinds of typical activities (background; arts-and-crafts; cleaning; [in a total of 32 events]) were simulated by recruited subjects at two typical indoor climatic conditions (cool and dry [20 ± 1 °C & 40 ± 10%], warm and humid [26 ± 1 °C & 70 ± 5%]). Results showed that tested LCMs had the ability to capture DCCs activities by simultaneously monitoring multiple IAQ parameters, and LCMs/LCSs revealed a strong correlation with RGIs in most events (R2 values from 0.7 to 1), but, for some events, the magnitude of responses varied widely. Sensirion SCD41, an emerging CO2 sensor built on the photoacoustic sensing principle, had a more accurate performance than all tested NDIR-based CO2 sensors/monitors. In general, the study implies that the selection of LCMs/LCSs for a specific application of interest should be based on emission characteristics and space conditions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Humanos , Niño , Adolescente , Recién Nacido , Lactante , Preescolar , Monitoreo del Ambiente , Dióxido de Carbono/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis
9.
Indoor Air ; 31(2): 405-425, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32969550

RESUMEN

This study reports the outcomes of a systematic literature review, which aims to determine the influence of four indoor environmental parameters - indoor air, thermal, acoustic, and lighting conditions -on the quality of teaching and learning and on students' academic achievement in schools for higher education, defined as education at a college or university. By applying the Cochrane Collaboration Method, relevant scientific evidence was identified by systematically searching in multiple databases. After the screening process, 21 publications of high relevance and quality were included. The collected evidence showed that the indoor environmental quality (IEQ) can contribute positively to the quality of learning and short-term academic performance of students. However, the influence of all parameters on the quality of teaching and the long-term academic performance could not be determined yet. Students perform at their best in different IEQ conditions, and these conditions are task-dependent, suggesting that classrooms which provide multiple IEQ classroom conditions facilitate different learning tasks optimally. In addition, the presented evidence illuminates how to examine the influence of the IEQ on users. Finally, this information supports decision-makers in facility management and building systems engineering to improve the IEQ, and by doing so, allow teachers and students to perform optimally.


Asunto(s)
Éxito Académico , Contaminación del Aire Interior , Rendimiento Académico , Humanos , Aprendizaje , Instituciones Académicas , Estudiantes , Ventilación
10.
Environ Int ; 142: 105832, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32521345

RESUMEN

During the rapid rise in COVID-19 illnesses and deaths globally, and notwithstanding recommended precautions, questions are voiced about routes of transmission for this pandemic disease. Inhaling small airborne droplets is probable as a third route of infection, in addition to more widely recognized transmission via larger respiratory droplets and direct contact with infected people or contaminated surfaces. While uncertainties remain regarding the relative contributions of the different transmission pathways, we argue that existing evidence is sufficiently strong to warrant engineering controls targeting airborne transmission as part of an overall strategy to limit infection risk indoors. Appropriate building engineering controls include sufficient and effective ventilation, possibly enhanced by particle filtration and air disinfection, avoiding air recirculation and avoiding overcrowding. Often, such measures can be easily implemented and without much cost, but if only they are recognised as significant in contributing to infection control goals. We believe that the use of engineering controls in public buildings, including hospitals, shops, offices, schools, kindergartens, libraries, restaurants, cruise ships, elevators, conference rooms or public transport, in parallel with effective application of other controls (including isolation and quarantine, social distancing and hand hygiene), would be an additional important measure globally to reduce the likelihood of transmission and thereby protect healthcare workers, patients and the general public.


Asunto(s)
Microbiología del Aire , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , Aerosoles , Betacoronavirus , COVID-19 , Aglomeración , Desinfección/instrumentación , Filtración , Humanos , Exposición por Inhalación , SARS-CoV-2 , Ventilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...